Skip to main content
\(\newcommand{\Z}{\mathbb{Z}} \newcommand{\reals}{\mathbb{R}} \newcommand{\real}[1]{\mathbb{R}^{#1}} \newcommand{\fe}[2]{#1\mathopen{}\left(#2\right)\mathclose{}} \newcommand{\cinterval}[2]{\left[#1,#2\right]} \newcommand{\ointerval}[2]{\left(#1,#2\right)} \newcommand{\cointerval}[2]{\left[\left.#1,#2\right)\right.} \newcommand{\ocinterval}[2]{\left(\left.#1,#2\right]\right.} \newcommand{\point}[2]{\left(#1,#2\right)} \newcommand{\fd}[1]{#1'} \newcommand{\sd}[1]{#1''} \newcommand{\td}[1]{#1'''} \newcommand{\lz}[2]{\frac{d#1}{d#2}} \newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}} \newcommand{\lzo}[1]{\frac{d}{d#1}} \newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}} \newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}} \newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\sech}{\operatorname{sech}} \newcommand{\csch}{\operatorname{csch}} \newcommand \dd[1] { \,\textrm d{#1} } \newcommand \de[2] { \frac{\mathrm d{#1}}{\mathrm d{#2}} } \newcommand \intl[4]{ \int\limits_{#1}^{#2}{#3}\dd{#4} } \newcommand\at[2]{\left.#1\right|_{#2}} \newcommand{\lt}{ < } \newcommand{\gt}{ > } \newcommand{\amp}{ & } \)

AppendixBHints and Solutions to Selected Exercises

Exercises3.6.1Exercises

Exercise1

From first principles find the derivative of \(\fe{f}{x}=\sqrt{3x+1}\)

AnswerSolution
Exercise2

Differentiate \(\frac{x^{2} - 2 \, \sqrt{x}}{x}\) showing each step and stating which rules are used.

AnswerSolution
Exercise4

Implicit Differentiation

\(y \cos\left(x\right) = \sin\left(x y\right) + 1\)

AnswerSolution
Exercise5

Implicit Differentiation

\(xy+2x+3x^2 = 4\)

AnswerSolution

Exercises3.7.1Exercises

Exercisea)
Find \(\lim_{t \to \infty} p(t)\). What does this mean for the rumor? AnswerSolution
Exerciseb)
Find the rate of spread of the rumor. AnswerSolution
Exercisec)
Find the inverse function of \(p(t)\) and give an interpretation of the meaning. AnswerSolution
Exercised)
Graph \(p\) for the case \(a=10,k=0.5\) and use your graph to estimate how long it will take for 80% of the population to hear the rumor. Can you also calculate this time? AnswerSolution

Exercises3.7.2Exercises

Exercisea)
A sample originally has a mass of \(800 mg\). Find a formula for the mass remaining after \(t\) days. AnswerSolution
Exerciseb)
Find the mass remaining after \(30\) days. AnswerSolution
Exercisec)
When is the mass reduced to \(1mg\)? AnswerSolution
Exercised)
Sketch a graph of the mass function. Answer

Exercises3.7.3Exercises

Exercisea)
From first principles. Solution
Exerciseb)

Using Taylor Series [3.7.3.1.2].

Solution

Exercises3.7.4Exercises

Exercisea)
The Mean Value Theorem states that if \(f(x)\) is defined and continuous on the interval \([a,b]\) and differentiable on \((a,b)\), then there is at least one number \(c\) in the interval \((a,b)\) (that is \(a < c < b\)) such that \begin{equation*}f'(c)=\frac{f(b) - f(a)}{b-a}\end{equation*}Solution

Exercises4.4Exercises

Exercise1

Response to Exponential Input

Consider the following differential equation:

\begin{equation}\frac{dy}{dt} = ay + e^{st}\label{men-28}\tag{4.4.5}\end{equation}\begin{equation}y=y(0)\:at\:t=0\label{men-29}\tag{4.4.6}\end{equation}

This is the standard growth equation with an exponential forcing term \(e^{st}\).

We look for a particular solutions of the form:

\begin{equation*}y_p = Ye^{st}\end{equation*}

where \(Y\) is a constant.

Substituting we get:

\begin{equation*}Ys e^{st} = aY e^{st} + e^{st}\end{equation*}

Rearranging gives:

\begin{equation*}Y=\frac{1}{s-a}\end{equation*}

Full solution is the particular solution plus null (or homogeneous) solution:

\begin{equation*}y(t)=\frac{e^{st}}{s-a} + C e^{st}\end{equation*}

From the initial conditions we get:

\begin{equation*}y(0) = \frac{1}{s-a} + C\end{equation*}

Substituting in \(y(t)\) gives:

\begin{equation*}y(t)=\frac{e^{st}}{s-a} + \left[y(0) -\frac{1}{s-a}\right] e^{st}\end{equation*}

Rearranging we can see the effect of the forcing in addition to the homogeneous term:

\begin{equation*}y(t)= y(0) e^{st} + \frac{e^{st}-e^{at}}{s-a}\end{equation*}

In Strang's terminology:

\begin{equation}y(t) = y_p + y_n = y(0) e^{st} + \frac{e^{st}-e^{at}}{s-a}\label{men-30}\tag{4.4.7}\end{equation}

That is, the solution is a combination of the standard homogeneous term - the standard growth factor - plus an extra term coming from the forcing factor. Notice that this extra term has a singularity (division by zero) at \(s=a\). This is Resonance.

This singularity can be handled using L'Hopital's Rule4.0.3

Figure4.4.1Gilbert Strang In Action

The full solution, using L'Hopital, should match the final solution in Strang's Lecture.

\begin{equation}y(t)=y_{0} e^{a t} + t e^{s t}\label{men-31}\tag{4.4.8}\end{equation}

Now try and solve this using SageMath.

HintSolution
Exercise2

Response to Oscillating Input

Consider the following differential equation:

\begin{equation}\frac{dy}{dt} = ay + \cos\left(\omega t\right)\label{men-32}\tag{4.4.9}\end{equation}\begin{equation}y=y(0)\:at\:t=0\label{men-33}\tag{4.4.10}\end{equation}

This is the standard growth equation with a sinuosoidal input term \(\cos\left(\omega t\right)\).

We look for a particular solutions of the form:

\begin{equation*}y_p = M\cos\left(\omega t\right) + N\sin\left(\omega t\right)\end{equation*}

where \(M\) and \(N\) are constants.

Now try and solve this using SageMath.

Solution