Skip to main content
\(\newcommand{\Z}{\mathbb{Z}} \newcommand{\reals}{\mathbb{R}} \newcommand{\real}[1]{\mathbb{R}^{#1}} \newcommand{\fe}[2]{#1\mathopen{}\left(#2\right)\mathclose{}} \newcommand{\cinterval}[2]{\left[#1,#2\right]} \newcommand{\ointerval}[2]{\left(#1,#2\right)} \newcommand{\cointerval}[2]{\left[\left.#1,#2\right)\right.} \newcommand{\ocinterval}[2]{\left(\left.#1,#2\right]\right.} \newcommand{\point}[2]{\left(#1,#2\right)} \newcommand{\fd}[1]{#1'} \newcommand{\sd}[1]{#1''} \newcommand{\td}[1]{#1'''} \newcommand{\lz}[2]{\frac{d#1}{d#2}} \newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}} \newcommand{\lzo}[1]{\frac{d}{d#1}} \newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}} \newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}} \newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\sech}{\operatorname{sech}} \newcommand{\csch}{\operatorname{csch}} \newcommand \dd[1] { \,\textrm d{#1} } \newcommand \de[2] { \frac{\mathrm d{#1}}{\mathrm d{#2}} } \newcommand \intl[4]{ \int\limits_{#1}^{#2}{#3}\dd{#4} } \newcommand\at[2]{\left.#1\right|_{#2}} \newcommand{\lt}{ < } \newcommand{\gt}{ > } \newcommand{\amp}{ & } \)

Section3.6CAP 2017, HW 2 due January 31

Subsection3.6.1Exercises

Definition3.6.1The Definition of a Derivative

The computation of the slope of a tangent line, the instantaneous rate of change of a function, at \(x=a\) can be found from the following limit:

\begin{equation}f'(x)=\lim_{a \to x} \frac {f(x) - f(a)} {x-a}\label{men-4}\tag{3.6.1}\end{equation}

With a small adjustment in notation this limit can be rephrased.

The derivative of \(f(x)\) with respect to \(x\) is the function \(f'(x)\) and is defined as:

\begin{equation}f'(x)=\lim_{h \to 0} \frac {f(x+h) - f(x)} {h}\label{men-5}\tag{3.6.2}\end{equation}
Definition3.6.2The Power Rule

If \(f: \mathbb{R} \rightarrow \mathbb{R}\) is a function such that \(f(x) = x^r\), and \(f\) is differentiable at \(x\), then, : \begin{equation}f'(x) = rx^{r-1}\label{men-6}\tag{3.6.3}\end{equation}

Definition3.6.3Linear Approximation

Given a twice continuously differentiable function \(f\) of one real number variable, Taylor's theorem for the case \(n = 1 \) states that: \begin{equation*} f(x) = f(a) + f'(a)(x - a) + R_2\ \end{equation*} where \(R_2\) is the remainder term. The linear approximation is obtained by dropping the remainder: \begin{equation} f(x) \approx f(a) + f'(a)(x - a)\text{.}\label{men-7}\tag{3.6.4}\end{equation}This is a good approximation for \(x\) when it is close enough to \(a\); since a curve, when closely observed, will begin to resemble a straight line. Therefore, the expression on the right-hand side is just the equation for the tangent line to the graph of \(f\) at \((a,f(a))\). For this reason, this process is also called the tangent line approximation.

1

From first principles find the derivative of \(\fe{f}{x}=\sqrt{3x+1}\)

Answer Solution
2

Differentiate \(\frac{x^{2} - 2 \, \sqrt{x}}{x}\) showing each step and stating which rules are used.

Answer Solution
4

Implicit Differentiation

\(y \cos\left(x\right) = \sin\left(x y\right) + 1\)

Answer Solution
5

Implicit Differentiation

\(xy+2x+3x^2 = 4\)

Answer Solution

Implicit Differentiation of \(y \cos\left(x\right) = \sin\left(x y\right) + 1\)

Implicit Differentiation of \(xy+2x+3x^2 = 4\)

Exercise 2.1

Exercise 2.2

Exercise 2.3

Exercise 2.4

Exercise 2.5

Exercise 3.1

Exercise 3.2

Exercise 4