\begin{align*}
\fe{f}{x}&=\frac{x^{2} - 2 \, \sqrt{x}}{x}\\
\text{Expand this to:}\\
\fe{f}{x}&=x - \frac{2}{\sqrt{x}}\\
\text{Differentiate each part using the power law: } \de {x^r}x = r x^{r-1}\\
\fe{\fd{f}}{x}&=1+\dfrac{1}{\sqrt{x^3}}
\end{align*}
Find the inverse function of \(p(t)\) and give an interpretation of the meaning.
Answer\(\frac{1}{k}\ln\left(\frac{at}{1-t}\right)\)Solution
\begin{align*}
p&= \frac{1}{1+ a e^{-kt}}\\
\text{Substitute p's for t's, and vice versa:}\\
t&= \frac{1}{1+ a e^{-kp}}\\
\text{Solve for p:}\\
1 + a e^{-kp}&=\frac{1}{t}\\
a e^{-kp}&=\frac{1}{t} - 1\\
e^{-kp}&=\frac{1}{at} - \frac{1}{a}\\
-kp&=\ln \left(\frac{1}{at} - \frac{1}{a}\right)\\
p&=-\frac{1}{k}\ln \left(\frac{1-t}{at}\right)\\
p&=\frac{1}{k}\ln \left(\frac{at}{1-t}\right)\\
\text{In other words the inverse is:}\\
p^{-1}&=\frac{1}{k}\ln \left(\frac{at}{1-t}\right)
\end{align*}
Exercised)
Graph \(p\) for the case \(a=10,k=0.5\) and use your graph to estimate how
long it will take for 80% of the population to hear the rumor.
Can you also calculate this time?
Answer
The rate of change of mass is proportional to the current mass:
\begin{equation*}\frac{dM}{dt} \propto M\end{equation*}
Lets call the constant of proportionality \(\lambda\).
\begin{equation*}\frac{dM}{dt} = -\lambda M\end{equation*}
The negative is because this is a decay.
The solution of this equation is:
\begin{equation*}M_t = M_0 e^{-\lambda t}\end{equation*}
(where \(M_0\) is the mass at \(t=0\).)
At the half-life \(t=T_{\frac{1}{2}}\) and \(M_t = \frac{M_0}{2}\):
\begin{equation*}\frac{M_0}{2} = M_0 \exp\left({-\lambda T_{\frac{1}{2}}}\right)\end{equation*}
\begin{equation*}2 = \exp\left({\lambda T_{\frac{1}{2}}}\right)\end{equation*}
\begin{equation*}\log{2} = \lambda T_{\frac{1}{2}}\end{equation*}
\begin{equation*}\lambda = \frac{log2}{T_{\frac{1}{2}}}\end{equation*}
We are told that the half-life is \(5\) days.
\begin{equation*}\lambda \approx 0.1386\end{equation*}
Substituting with the original mass gives us:
\begin{equation*}M_t = 800 e^{-0.1386t}\end{equation*}
where \(M_t\) is the mass in \(mg\) and \(t\) is the time in days.
The first derivative is given by:
\begin{equation*}\frac{\Delta f(x)}{\Delta x} = \lim_{h \to 0}\frac{f(x+h)-f(x)}{(x+h)-(x)} = \lim_{h \to 0}\frac{f(x+h)-f(x)}{h}\end{equation*}
The solution is to apply this twice. The trick here is to start with the correct increments
(see Math Stack Q&A [3.7.3.1.1]).
First set \(a=x+h\):
\begin{equation*}f(x)f(a)+\frac {f'(a)}{1!} (x-a)+ \frac{f''(a)}{2!} (x-a)^2+\frac{f^{(3)}(a)}{3!}(x-a)^3+ \cdots\end{equation*}
TBD
Exercises3.7.4Exercises
Exercisea)
The Mean Value Theorem states that if \(f(x)\) is defined and continuous
on the interval \([a,b]\) and differentiable on \((a,b)\), then there is at least
one number \(c\) in the interval \((a,b)\) (that is \(a < c < b\)) such that
\begin{equation*}f'(c)=\frac{f(b) - f(a)}{b-a}\end{equation*}Solution
\begin{align*}
\text{Apply the mean value theorem}\\
&f'(c)=\frac{f(8) - f(2)}{8-2}\\
\text{Since we know}\\
&3 \leq \fe{f'}{x} \leq 5\\
\text{We get}\\
&3 \leq \frac{f(8) - f(2)}{6} \leq 5\\
&18 \leq f(8) - f(2) \leq 30
\end{align*}
Exercises4.4Exercises
Exercise1
Response to Exponential Input
Consider the following differential equation:
\begin{equation}\frac{dy}{dt} = ay + e^{st}\label{men-28}\tag{4.4.5}\end{equation}\begin{equation}y=y(0)\:at\:t=0\label{men-29}\tag{4.4.6}\end{equation}
This is the standard growth equation with an exponential forcing term \(e^{st}\).
We look for a particular solutions of the form:
\begin{equation*}y_p = Ye^{st}\end{equation*}
where \(Y\) is a constant.
Substituting we get:
\begin{equation*}Ys e^{st} = aY e^{st} + e^{st}\end{equation*}
Rearranging gives:
\begin{equation*}Y=\frac{1}{s-a}\end{equation*}
Full solution is the particular solution plus null (or homogeneous) solution:
\begin{equation*}y(t)=\frac{e^{st}}{s-a} + C e^{st}\end{equation*}
That is, the solution is a combination of the standard homogeneous term - the standard growth factor - plus an extra term coming from the forcing factor.
Notice that this extra term has a singularity (division by zero) at \(s=a\). This is Resonance.
This singularity can be handled using L'Hopital's Rule4.0.3
The full solution, using L'Hopital, should match the final solution in
Strang's Lecture.
\begin{equation}y(t)=y_{0} e^{a t} + t e^{s t}\label{men-31}\tag{4.4.8}\end{equation}
This is not quite the same format as Strang but it is easy to see that it is equivalent.
As mentioned above this solution can be taken further by using L'Hopital's Rule.4.0.3
We can circumvent the \(0/0\) catastrophe by differentiating the numerator and denominator.
Sage Commands:
numerator = e^(s*t) - e^(a*t)
numerator.diff(s)
denominator= s - a
denominator.diff(s)
This results in \(\frac{f'(x)}{g'(x)}=\frac{t e^{s t}}{1}=t e^{s t}\)
Hence the full solution using L'Hopital now matches Strang's final solution:
\begin{equation*}y(t)=y_{0} e^{a t} + t e^{s t}\end{equation*}
Exercise2
Response to Oscillating Input
Consider the following differential equation:
\begin{equation}\frac{dy}{dt} = ay + \cos\left(\omega t\right)\label{men-32}\tag{4.4.9}\end{equation}\begin{equation}y=y(0)\:at\:t=0\label{men-33}\tag{4.4.10}\end{equation}
This is the standard growth equation with a sinuosoidal input term \(\cos\left(\omega t\right)\).